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In 1990 Cook described a semi-empirical model for predicting the pressure field beneath roof
corner vortices. He proposed that the flow can be considered as a conical vortex “growth
region” near the roof corner, and as a cylindrical vortex “mature region” further away from the
corner, and derived an equation for surface pressure based on the supposed mechanics of
a Rankine vortex with a number of variable parameters. The work described in this paper sets
out to investigate the adequacy of this model. Firstly, three extensive data sets are used to
determine the ranges of building geometry and wind direction for which the model is valid, and
to determine the model parameters. It is found that the growth region model is a good
descriptor of the pressure field for corners of included angle 60° or more, with wind directions
between + 15°, approximately, to the corner bisector. No mature region in the form suggested
by Cook was found, although for low height/length ratio buildings a change in flow pattern
near the rear of the building was apparent, but not in the form suggested by Cook. The model
parameters derived for the growth region were on the whole consistent, and provided useful
insights into the mechanics of the vortex system. These parameters were used to predict the
measured pressure distributions of a further independent data set and reasonable agreement
was found. Future developments and applications of the model are discussed.
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1. INTRODUCTION

FOR LOW RISE BUILDINGS WITH WINDS at oblique angles to the edges, the existence of “delta
wing vortices” in the region of the windward facing corner is well established at both model
scale and full scale. These vortices produce potentially damaging high suctions on the roof
surface in their vicinity. The precise nature of these vortices is at the moment the subject of
considerable investigation, both through measurements made on wind tunnel models [for
example, Kawai (1996), Marwood & Wood (1996)] and through the use of various
computational fluid dynamics (CFD) techniques [see, for example, the LES calculations of
Thomas & Williams (1996)].

It is apparent from the CFD investigations that current CFD codes are not able to
adequately model these vortex flows, although work on large eddy simulations is showing
some promise. In addition, the wind tunnel work, whilst producing a great deal of high
quality experimental data, nonetheless lacks a suitable framework for analysis and compari-
son between the different data sets. Cook (1990) proposed a semi-empirical model of the
pressure field beneath such vortices, based approximately on what would be expected
beneath a Rankine vortex. This model contains a number or parameters that need to be
determined experimentally. Cook suggests that this model has the potential to be useful in
design, if the parameters can be adequately specified, and could also be a useful research
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tool as it provides a framework for the systematic consideration of the effect of changes in,
say, building height, turbulence intensity, etc. Cook himself only carried out a superficial
calibration of the model, determining the various parameters by a best fit analysis to
measured pressure fields.

The present paper considers this model further in a reasonably systematic manner. In
Section 2 the model formulation is set out and a physical interpretation given to the various
model parameters. Section 3 sets out the data sets used in the analysis—three fairly extensive
sets of data that were used to investigate the variation of the various model parameters, and
one further independent data set that was used for verification purposes. Section 4 then
considers the “mature region” of the model, the region of the vortex well away from the
leading corner in which Cook considers the overlying vortex pattern to be a cylindrical
vortex parallel to the roof edge. Section 5 then considers the “growth region”, near to the
vortex corner, where Cook assumes a conical vortex region to exist. The extent of the
validity of this model is determined, and the model parameters obtained from the three
extensive datasets. Section 6 then attempts to verify these parameters by comparing
the predicted results with the results of a further independent dataset. Finally, in Section 7
the adequacy of the model is discussed and some concluding remarks are made.

2. THE SEMI-EMPIRICAL MODEL
2.1. MopEL FORMULATION

Figure 1 is a definition sketch of the coordinate system that will be used. It shows the flat roof
of a wedge-shaped building with included angle 0 (shown here for 0 = 90°). The x and y axes
are aligned with the cube edges, which have lengths W and L, respectively. The building has
a height H; r is the radical distance along a line from the cube windward corner at an angle
o to the corner bisector. The wind direction is given by the angle f§ to the corner bisector. In
what follows, the vortex on the side of the cube for which f is positive will be referred to as
the windward vortex, and the vortex on the negative f§ side as the leeward vortex.

In his model Cook essentially assumes two regions of vortex flow. For the first, the
growth region, he assumes that a vortex develops along a radial line from the apex, whilst
for the second, the mature region, he assumes that after some distance from the apex the
vortex ceases to develop and follows a track parallel to the edge of the roof. In the growth
region the surface pressure distribution is taken to have the form.

Cp=Cpo + (Cp1 — Cpo) [1 — Slog(r/b))/{1 + [t — 020)/2)1%} (1)

Here C, is the pressure coefficient at (r, «), and C,, C,1, S, b, o9 and o, are parameters to be
determined, whose meaning will be considered in Section 2.2.
In the mature region, the pressure distribution is taken to be given by a similar equation

Cp=Cpo + (Cp1 — Cpo) [1 — Slog(rn/LYI/{1 + [(y — yo)/v:)1*} 2

where C, is the pressure coefficient at a distance y from the edge of the block; r,,, yo and
y. are again parameters to be determined.

2.2. PHyYSICAL INTERPRETATION OF COOK’S MODEL

First consider the growth region as defined by Cook. Essentially it is assumed that the
pressure coefficient can be taken to vary with distance from the upstream corner, and with
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Figure 1. Definition sketch of coordinate system.

angular displacement from some reference angle. The two variations are taken to be
independent of each other. The variation with distance from the corner is taken to be
logarithmic (based on experimental observations), whilst the angular variation is taken to
be given by the term in o in equation (1). Cook argues that the form of this variation is
consistent with what would be expected beneath the core of a Rankine vortex (see below).
On the line from the corner where o = o, the pressure is a minimum, and o, is to be
interpreted as the angular position of the vortex core. o, is some measure of the radius of the
core. b is some arbitrary reference length: in what follows it will be taken as the height of the
block or building under consideration. C,, and C,; are reference pressure coeflicients with
no particular physical meaning. Mathematically, for « = «p and r = b, C,, = C,;, and, when
o is very large C, = C,o.

In the mature region the vortex track is taken to be parallel to the edge of the building.
The pressure is still assumed to vary in the perpendicular direction in the same way, with
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Yo replacing o, and y, replacing o., but no variation is assumed along the vortex core. The
parameter r,, is the value of r at the end of the growth region.

Before proceeding further it is necessary to consider whether or not the model of Cook is
actually representative of the flow beneath a Rankine vortex. The Appendix shows that the
“angular” function of equation (1) is not truly representative of the pressure field on
a surface beneath a Rankine vortex, but nonetheless it has the correct general behaviour—a
maximum at o = «, and tending towards a constant value for large values of «, and the
parameters in that equation are surrogates for perhaps more physically meaningful para-
meters (such as vortex height above the surface, core diameter and velocity, etc.). It is thus
best to think of Cook’s model as an empirical representation of the pressure field below
a vortex system that would seem to adequately represent reality, rather than a precise
description of the flow beneath a Rankine vortex.

Finally it should be noted that, in what follows, Cook’s expressions will be written in
a slightly different format. For the growth region (which as will be seen is the major region
of interest), equation (1) will be rewritten as

Cp = Cpo + (AC, — G log(r/D))/{1 + [(o — oo)/2c)]*} &)
where AC, = C,; — C,o and G = SAC,,.

3. DATA SETS USED IN ANALYSIS AND VERIFICATION
3.1. ANALYSIS

Three extensive data sets were used to find the parameters in Cook’s model for a variety of
conditions. The experimental conditions under which they were obtained are described in
what follows.

3.1.1. Results of Maruta (1985)

Maruta (1985) carried out experiments in the BRE No 2 wind tunnel on a series of
wedge-shaped blocks of included angle 6 of 30, 60, 90 and 120°. The blocks were of length
L (= W) equal to 0-1m and were tested at heights (H) of between 0-05 m and 0-2 m, giving
values of L/H between 0-5 and 2-0. However, all the results presented here are for L/H = 1-0.
For each wedge, the wind angle f was varied between 0° and normal to one face of the
block. The atmospheric boundary layer simulation has a roughness length of around
0-001 m, and the wind tunnel mean velocity at the height of the top of the block was 10 m/s.
Values of turbulence intensity and length scale are not given. The data was analysed in the
standard BRE manner to produce mean and extreme pressure coefficients at each tap. The
mean pressure coefficients were normalized with the mean velocity, and the extreme
pressure coefficients obtained from a conventional Gumbel extreme value analysis for
sampling periods of 0-01, 0-04 and 0-16 s were normalized with the extreme value of velocity
for a corresponding time period [the pseudo steady form defined by Cook (1985)].
Assuming a geometric scale of 1/100th and a velocity scale of unity, these correspond to 1,
4 and 16 s extreme values, which are classified in BRE terms as class A, B and C values. Only
mean values and class A values will be discussed in this paper.

3.1.2. Results of Williams (1995)

Williams (1995) describes tests carried out in the BRE No 3 wind tunnel on a cuboid
(0 =90°) with L =W =06 m and values of H of 0-075, 0-15, 0-2, 0-3 and 0-6 m, giving
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values of L/H of 1, 2, 3, 4 and 8. However results for L/H = 8 will not be discussed here to
any extent, since for this situation the height of the top of the block was similar to the height
of the upstream surface roughness elements, and it was felt that the measured pressures
could have been affected by the wakes of individual roughness elements (particularly near
the leading edge). The block was extensively pressure tapped with a large number of taps in
the windward corner (Figure 2). Wind angles  of 0 and 15° were used. The atmospheric
boundary layer simulation had a surface roughness length of 0-007 m and a displacement
height of 0-025 m, with values of the longitudinal turbulence length scale of between 0-3 m
and 0-5 m. The turbulence intensities at heights of 0-15, 0-20, 0-30 and 0-6 m (i.e. the various
block roof heights) were 0-26, 0-22, 0-18 and 0-10, respectively. Thus, note that in these
experiments the block height/length ratio and the rooftop turbulence intensity vary to-
gether. The wind tunnel velocity at a height of 0-3 m was 14-5 m/s. Mean pressure coeffi-
cients and class A, B and C pressure coefficients were measured as in the tests of Maruta.
Again, only mean and class A coefficients are considered here.

Figure 2. Location of pressure taps on the model of Williams (1995).
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3.1.3. Results of Bienkiewicz & Sun (1992)

Bienkiewicz & Sun (1992) carried out tests on a 1/25th scale model of the Texas Tech
University (TTU) building in the Colorado State University (CSU) 2-1 x 1-8 x 29 m wind
tunnel. The model is a cuboid (0 =90°) with a slight roof pitch, with L = 0-552 m,
W = 0369 m and H = 0-156 m. The corner area was pressure tapped (Figure 3), and tests
were carried out with and without parapets. However, the results with parapets are not
considered here. The wind angle § was varied between — 45° and + 45° in 5° increments.
The atmospheric boundary layer simulation that was used had a power law exponent of
0-14 and a turbulence intensity of 0-2 at the model roof height. Mean and peak pressure
coeflicients are presented, normalized with the mean velocity at roof height. The data was
filtered at 200 Hz, so the peak values correspond to approximately 0-005 s samples.

3.2. VERIFICATION; THE DATA OF TIELEMAN ET 4L. (1994)

Tieleman et al. (1994) presents the results of pressure measurements made on 1/50th and
1/100th scale models of the TTU building in the University of Western Ontario (UWO) and
CSU wind tunnels, with a wide range of turbulence intensities in the atmospheric boundary
layer simulations. They again present results for mean and peak values (sample length
0-007-0-01 s) normalized with the mean velocity at the top of the building. In particular,
they provide detailed data for f = 15°, o = 28° (below the vortex centre) with roof height
turbulence intensities between 0-061 and 0-323. The results of Cook’s model will be
compared directly with this data, using the parameters derived form the datasets of
Section 3.1.
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Figure 3. Location of pressure taps on the model of Bienkiewicz & Sun (1992); black squares indicate pressure
taps on full scale TTU building.
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4. THE MATURE REGION

As the first step in the verification of Cook’s model we shall firstly consider the mature
region. From equation (2) it can be seen that, if such a region exists, then the pressure along
a line parallel to the edge of the building should be constant. The results of Williams (1995)
allow a direct check to be made on this. Figure 4 shows some of Williams’ data for mean
pressure coefficient with § = 0°, plotted in this way. It can be seen that the pressure becomes
constant only on the leeward part of the roof upper surface for large values of L/H, and then
only some distance inboard of the leading edge. Flow visualization data presented by
Williams suggests that for the higher values of L/H the vortex core does not become parallel
to the roof edge, but rather seems to drift towards the edge as the distance from the corner is
increased. These results thus suggest that the mature region as defined by Cook does not in
fact exist, at least for the range of experimental parameters investigated. In what follows
that region will not be considered further. It is sufficient to state here that for high values of
L/H the flow pattern changes in some fashion well away form the windward corner, but the
nature of this change has not yet been elucidated.

5. THE GROWTH REGION
5.1. DETERMINATION OF THE VALIDITY OF THE GROWTH REGION FORMULATION

There are two basic tests to check whether the growth region formulation is adequate. The
first is to plot the pressure coefficient data against log r. An example of this for the results of
Williams is shown in Figure 5. It can be seen that, in general, the plots are straight lines and
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Figure 4. Data from Williams (1995) showing mean pressure coefficients plotted along lines a constant distance
from the upstream edge of the block (8 = 90°, f = 0°): (a) L/H = 1;(b) L/H = 2;(c) L/H = 3;(d) L/H = 4),r in mm.
Distance from leading edge: () 25 mm; ((J) 50 mm; (@) 75 mm; (O) 100 mm.
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Figure 5. Data from Williams (1995) showing mean pressure coefficients plotted along lines of constant o; r in
mm (0 =90°, f=0°: (a) L/H=1;(b) L/H=2;(c) L/H=3.(—M—) 0 =0; (—0—) a =10°, (—¢—) o = 15°,
(—O—) 0 =25% (—A—) a =30° (—A—) o = 35°, (—@—) o0 = 40°; (—O—) a0 = 42-5°.
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are thus consistent with Cook’s model, particularly for values of o greater than about 25°,
which, it will be seen, corresponds with the region of the vortex core. It was further found
that for nearly all the results considered the growth region formulation was applicable to
nearly all the roof surface. It is of interest to note here that at the pressure tap nearest the
leading edge, for o = 30° (near the vortex core), there is a low magnitude of C,, which
possibly represents a very small vortex development region.

Secondly, if the gradients of these lines (g) are plotted as a function of o they should have
the form g = — G/{1 + [(¢ — 20)/%)*]} (see equation (3)). This is sketched in Figure 6. This
procedure was carried out for the three datasets outlined in Section 3.1, and typical results
from the data of Williams are shown in Figure 7 for the windward side of the roof only.
From the results it is possible to derive validity tables showing the parameter range over
which the growth region formulation is acceptable. Table 1 shows the results for the data of
Maruta. The nomenclature used in this table is that, for each pressure coefficient type (mean
or class A), and each wedge angle 0, a two letter code is given for each value of wind
direction f: “WL” indicates that the tests just outlined indicate a vortex on the windward
and leeward sides of the roof (Figure 1); “WX” indicates that a vortex is only observed on
the windward side; and “XX” indicates that the pressure coefficients were not consistent
with the pressure of vortices. From this table it can be concluded that in general the growth
region model is valid for wedge angles (0) greater than or equal to 60°, with vortices on the
windward side for  up to 30°; and vortices on both windward and leeward sides for ff up to
15°. There is a tendency for “mean” vortices to exist to higher values of f§ than “extreme”
vortices.

Table 2 shows a similar tabulation for the results of Williams. The nomenclature is
similar to that of Table 1, but different values of L/H are given, and the code “W?” indicates
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Figure 6. Expected variation of g with o of model is valid.
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Figure 7. Data of Williams (1995) for g (mean pressures) against o (0 = 90°, f# = 0°): (a) L/H = 1; (b) L/H = 2;
(c) L/H =3.

vortices were observed on the windward side of the roof, and no data was available on the
leeward side. The results are broadly consistent with Table 1 and show the validity of the
formulation for the range of parameters considered.

Finally, Table 3 shows a similar tabulation for the results of Bienkiewicz & Sun (1992).
Again, the results are broadly consistent, with “mean” vortices existing for  up to 20° and
“extreme” vortices for f up to 10°. In conclusion, it would seem that for = 90° (a cuboid,
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TABLE 1
Validity of growth region formulation-data of Maruta (1985), L/H = 1
ﬁO 90
30 0 90 120

Mean values

0 XX WL WL WL
15 XX WX WL WL
30 XX WX WX WL
45 XX XX XX
60 XX XX
Class A

0 XX WL WL WL
15 XX WX WX WL
30 XX XX WX XX
45 XX XX XX
60 XX XX

XX: no vortices; WL: vortices on windward and leeward sides of roof; WX: vortex on
windward side only; blank: no data available.

TABLE 2
Validity of growth region formulation-data of Williams (1994), 6 = 90°

p° L/H
1 2 3 4

Mean values

0 W? W? W? W?
15 W? W? W? w?
Class A

0 w? w? w? w?
15 Ww? W? W? W?

W? indicates vortex on windward side, no data on leeward side.

by far the most common case), the growth region model of Cook is valid for wind angles
B less than about 20° for mean pressure coefficients, and wind angles of less than about
10-15° for extreme pressure coefficients.

5.2. DETERMINATION OF GROWTH REGION PARAMETERS

Cook determined the parameters in the model by an iterative best fit analysis of the data.
This produced reasonable values for some of the parameters, but unrealistic values for the
others. For example, he obtained values of the vortex core radius for a cuboid of between 40
and 70°. The approach taken here is rather different. Firstly, for each set of data a graph of
the form of Figure 7 is produced. The vortex core position o, is then read directly from the
graph. For o = o the magnitude of the peak of the curve g, is simply equal to — G, (see
equation (3)). Now suppose a point on the graph with « = o, is defined at which
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TABLE 3
Validity of growth region formulation-data of
Bienkiewicz & Sun (1992), 0 = 90°.

p° Mean Peak
pressures pressures
—45 XX XX
—20 WL XX
— 15 WL XX
—10 WL WL
-5 WL WL
0 WL WL
5 WL WL
10 WL WL
15 WL XX
20 WL XX
45 XX XX

Key as for Table 1.

g =g, = Pdo, Where p is around 0-5; then, it is straightforward to show that

% = (o, — %0)/y/(1/p) — 1 (4)

Thus, if p is exactly 0-5, o, = o, — 0tp.

Now, it is also possible for each set of data to draw a graph similar to Figure 7 that shows
the values of the C, versus log r graphs when r = b, the reference height, i, against angular
position «. From this graph it is possible then to find values of i at « = o, and at a = o,
io and i,. Again, it is simple to show that

Cpo(pio —ip)llp = 1) (5)

and

AC, =[—io+ i, +(p— Dgologhl/p — 1) (6)

Thus, values of the parameters in Cook’s model can be calculated directly. We will now
consider the results of such an analysis applied to the three basic data sets. In what follows,
the reference length b is taken as the height of the building, H. It was found that this
produced more consistent values of the parameters than the block height L, perhaps
unsurprisingly, as H is the only scaling length that can be of relevance near to the windward
corner. Similarly, the reason for rewriting equation (1) in the form of equation (3) was
because the calculated parameters were less sensitive to precise details of the curve fit if this
formulation was used. The results are shown in Figures 8-12 for the parameters g, o, Cpo,
ACp and G, respectively. The results of Maruta for L/H = 1 are shown for class A and the
mean pressure coefficients with f = 0 and 15° on the windward side of the roof, against
wedge angle 0. The results of Williams for 0 = 90° are also shown for the mean and class
A pressures for § = 0 and 15° on the windward side of the roof, but are tubulated against
L/H and turbulence intensity at roof height I, these two parameters varying together for
these results. The results of Bienkiewicz & Sun for 6 = 90° for mean and peak pressure
coefficients on both the windward and the leeward side of the roof are tabulated against
wind angle f.
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5.3. DiScuUSSION OF RESULTS AND PHYSICAL INTERPRETATION
oF GROWTH REGION PARAMETERS

Firstly, consider the results in Figure 8 for aq. From Figure 8(a) it can be seen that, as would
be expected, o, increases as the wedge angle increases, but there seems to be little consistent
variation with f, and the results are similar for mean and peak pressure coefficients. It will
be seen in what follows that in general the results of Maruta are the most scattered and
reveal little consistent variation, probably because of the rather restricted number of
pressure tappings used in his experiments. The results of Figure 8(b) for 0 = 90° (which are
only accurate to the nearest 5°) show the variation with L/H or turbulence intensity I, these
two parameters being varied together in the experiments of Williams. These results suggest
that oy decreases slightly as f§ increases, with the mean values being greater than the class
A values, i.e. the extreme vortices lie in board of the mean vortices. Figure 8(c) shows the
variation of a, with wind direction f. This figure for windward and leeward vortices should
be symmetrical about f = 0. The results, however, suggest symmetry about a value of
p rather less than 0, presumably because of a slight asymmetry in the experiments. The same
effect will be seen in the figures that follow. Again, the results suggest for the windward
vortices that o, decreases slightly as f§ increases, with the extreme values rather lower than
the mean values. Now the extreme values of the pressure coefficients are obtained from an
analysis of the time histories of pressures at individual points. Thus, the overall extreme
pressure distribution does not correspond to an instantaneous data set. Now, the results of
Kawai & Nishimura (1994) and Marwood et al. (1994) suggest that the delta wing vortices
are oscillatory and intermittent. The analysis presented here suggests that, whilst on average
a certain value of o, the vortex centre, can be identified, the vortex is strongest at that
portion of its oscillatory cycle corresponding to the value of o, for the extreme distribution.

Figure 9 shows the results for o, Figure 9(a) shows little consistent variation of this
parameter with wedge angle; i.e. the size of the vortex core does not depend on wedge angle.
Also, little variation can be seen between peak and class A values, or with wind direction.
Figure 9(b) shows the variation of a, with L/H and I. It can be seen that o, increases with
L/H or I, with wind direction £, and the class A values are greater than the mean values. The
latter two trends can also be seen in the data of Figure 9(c). Thus, it would seem that the
vortex core radius increases as the wind angle and the turbulence intensity increases. The
large values for the extreme values probably again reflect the oscillatory nature of the vortex
core, i.e. the movement of the vortex produces a larger effective core.

Figure 10 shows the variation of the reference pressure parameter C,o. Figure 10(a) shows
little consistent variation with wedge angle. Figure 10(b) shows that C,, increases with L/H
or I and perhaps with wind angle f8, with the class A values being above the mean values.
The same trends can be observed in the data of Figure 10(c), but the magnitudes of the
parameter in Figure 10(b) and 10(c) do not compare particularly well. This is perhaps due to
the common difficulty in wind tunnel testing of adequately specifying a reference static
pressure, and some pressure offsets between different experiments are to be expected. It is
also probably due to the different definitions of pressure coefficients for the extreme data.

Figure 11 shows the results for AC,. Again, the results of Mauta in Figure 11(a)
show little consistent variation with wedge angle. The results of Figure 11(b) show a
general trend for the magnitude of AC, to decrease with L/H or I increasing. Figure 11(c)
shows an increase in this parameter with f§ for the windward vortex, again with the
values corresponding to the peak pressures being greater than those corresponding to the
mean pressures. Again, there is some discrepancy between the magnitudes of the results of
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imply a greater lateral variation of pressure coefficients for the class A peak results than for
Finally, Figure 12 shows the results for the gradient parameter G. Figure 12(a) shows little

Figures 11(b) and 11(c), probably for the reasons outlined above. Physically these results
the mean results.

shows values of G of around — 1-0 for mean pressures,
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Figure 13. Data of Williams (1995). Back prediction of mean pressure coefficient (6 = 90°, f8

(a) experimental, (b) predicted.
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and around — 3 for extreme pressures. Figure 12(c) shows slightly lower values of G for
mean pressures (around — 0-5 to — 0-7), but similar values for extreme pressures. In
physical terms, these results imply that the extreme pressures decay more rapidly than the
mean pressures away from the leading corner.

Before concluding this discussion of the model parameters, it is of course possible to use
the calculated parameters to “back predict” the experimental data. The results of such
a procedure are shown in Figure 13 for some of the results of Williams. The predicted and
the measured values can be seen to be of the same form. In general, Williams showed that
the largest errors are in the roof regions, well away from the vortex core or towards the rear
of the roof, as would be expected. However, in these regions the pressure coeflicients are
usually small and not of significance in design.

6. VERIFICATION OF PARAMETERS

In this section the model parameters obtained in section 5 are used to predict the pressure
distributions measured by Tieleman et al. (1994) on the TTU building. Two predictions are
carried out.

(a) Using the values in Figure 8-12 obtained from the data of Williams (1995), the mean
and peak values of pressure coefficient for 6 = 90°, f = 15° and « = 28° (close to the vortex
core) are calculated for different values and I. This assumes that the parametric variation is
due to variations in [ rather than L/H in this data. The comparison with the mean values of
Tieleman et al. is straightforward, but the extreme values present some problems in view of
the different definitions of extreme values used.

(b) Using the values in Figures 8—12 obtained from the data of Bienkiewicz & Sun (1992),
the mean values of pressure coefficient for 6 = 90°, f = 15° and o = 28° were calculated for
a value of I of 0-2.

Consider first the results of prediction (a). Figure 14(a) shows the mean value results of
Tieleman et al. with C, plotted against log, (r/H) for 0-61 < I < 0-323. The predicted results
for 01 <1 <026 are shown in Figure 14(b). The results can be seen to be in good
qualitative agreement. The major discrepancy seems to be the positive values of C, pre-
dicted for high I and high r/H. This is probably due to the problem in ensuring consistent
static pressure measurements referred to in the last section. The general variation with I is
well predicted.

Figures 15(a) and 15(b) show corresponding results for extreme values. In both cases,
rather smaller variations with I can be seen than for the mean results. In general predictions
are substantially lower in magnitude than the measured values. This is primarily due to the
different definitions of extreme pressure coefficient used by Tieleman et al. and Williams.
Tieleman et al. defined the extreme pressure coefficients as the ratio of extreme pressures to
mean dynamic pressures, whilst Williams defined them as the ratio of extreme pressure to
extreme dynamic pressures. If the predicted values, which are based on parameter values
obtained from the latter data set, were to be multiplied by the square of the velocity gust
factor, closer agreement would be obtained. Unfortunately, however, values of this para-
meter were not obtained in the investigation of Williams (1995).

Figure 16 shows the results of comparison (b) for mean pressure coefficients. The
predicted results for I = 0-20 are compared with the results of Tieleman et al. for I = 0-195.
Against, there can be seen to be reasonable agreement, but with an offset that may be partly
due to static pressure definition problems.
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Figure 14. Verification of model for 0 = 90°, o = 28°, f = 15°: (a) Tieleman et al. mean pressures; (b) model
predictions for mean pressures.

7. DISCUSSION AND CONCLUDING REMARKS

Before proceeding to draw together the work of previous sections, it is worth describing in
a little more detail the results of two investigations already mentioned briefly: those of
Marwood et al. (1994) and Kawai & Nishimura (1994). Both these investigations show quite
clearly that the delta wing vortex flow is essentially unsteady. Marwood et al. suggest from
LDA measurements that his unsteadiness is primarily due to an intermittency of the flow,
whilst Kawai & Nishimura suggest from an analysis of surface pressure correlations that
there is a regular oscillatory flapping of the vortex system. These two observations are not,
of course, mutually exclusive. In addition, the pressure spectra of Williams (1995) showed
low frequency peaks which could be attributed to such an intermittency or vortex flapping.
Thus, mean pressure fields represent the mean of an unsteady system of vortices moving
over the roof, whilst extreme pressure fields, usually measured by extreme value analysis of
sequential measurements of pressure at individual pressure tappings, represent simply the
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Figure 15. Verification of model for 6 = 90°, o = 28°, f = 45°: (a) Tieleman et al. mean pressures; (b) model
predictions for mean pressures.

extremes registered at each point, which may well be measured at different parts of the
oscillatory cycle for different points. It is worthwhile to bear this point in mind in the
discussion that follows.

Firstly, consider the validity of Cook’s model. Very broadly, it would seem that the
growth region model is an adequate representation of the surface pressure field for included
building angle > 60°, with a wind direction of approximately =+ 15° from the corner
bisector, this angle being rather less for extreme pressure fields than for mean pressure fields.
The mature region model proposed by Cook does not appear to be adequate, although
these is some evidence from the results of Williams (1995) to suggest that there is a change in
flow pattern at the rear of the roof for low height/length ratios, with the vortices appearing
to move towards the roof edge. This is further supported by the flow visualization of
Kramer & Gerhardt (1991) and the expression for pressure variation with r given by
Tieleman et al. (1994), where C, is taken to be given by an expression of the form
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{a + blogr + c(logr)?}, i.e. a deviation from the expression suggested by Cook for large r.
Further work is needed to elucidate the nature of the flow in this region.

For the growth region the predicted parameter values are on the whole consistent
between the data sets, particularly for the vortex parameters o, and «,.. As is expected, the
vortex position a, is different for extreme and mean pressure fields, reflecting the oscillatory
nature of the flow. o, the vortex width, increases with turbulence intensity, perhaps
indicating an increasing oscillatory nature, and is greater for the extreme pressure fields,
reflecting a broadening of the effective vortex width. However, the discussion above needs
to be borne in mind—it may be that the measured extreme pressure field only poorly
describes the real nature of the flow.

The parameters C,o, AC, and G are also generally consistent, but the results for the
various data sets differ somewhat, probably due to the different definitions of the pressure
coefficients used by the investigators, and due to the problem in defining static pressure.

Now, if the model is to be of use in design, it is important that near the windward corner
(say r/H = 0-1) the values of C, should be predicted to a certain accuracy; + 10% seems
reasonable. For this value of r/H, at the vortex centre (& = a,), for 8 = 90°, f = 10° it is
easily shown from equation (3) that

dc, dc dc
=1 P, =2=230 7
dC,,  ° dAC, 4G ’ @

Thus, for C,, to be accurate to within + 10%, C,, and AC, needs to be accurate to this level,
and G needs to be accurate to + 4:3%. From Figures 10-12 it can be seen that it would at
present be difficult to specify these parameters to this level of accuracy. Thus it would seem
that at present the model is probably not adequately specified for design purposes. More
work is needed to determine the various parameters for different values of turbulence
intensity, wind angle, etc. It may well be that sufficient data already exists in the literature to

enable this to be done—for example, only some of the extensive data of Tieleman et al. (1994)
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has been used here, but this represents a considerable data analysis task. It seems likely that,
for the immediate future, the main use of the model will be as a research tool, to provide
a framework for the investigation and parameterization of delta wing vortex systems.

As an example of such a use, it is of interest to consider how the model can be used to
predict area averaged pressures. It can easily be shown from an area integration of equation
(3) that, for an area of radius R from the windward corner for f = 0° (i.e. symmetric flow),
the area averaged pressure is

4O(C R G _ T %o _ %o
Cpo + <7> <AC,, — Glogﬁ + E) |:tan ! <4_0<c — Of_c> —tan~! <0€_c>

Clearly, this simple case yields a simple analytical expression. However, in principle, the
area averaged pressure over any part of the roof can be calculated from equation (3) for any
wind angle, etc., although in general numerical techniques will need to be used for this. Also, in
view of what was said earlier, this approach is only valid for mean pressure fields—area averaged
extreme pressure fields depend upon both the spatial and time dependence of surface pressures.
For applications such as this the parametric model is an extremely useful tool.
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APPENDIX 1: THE RANKINE VORTEX ABOVE A SURFACE

The tangential velocity within an isolated Rankine vortex core is given by

[ ) [

where u, is the tangential velociy at a distance d = d, from the centre of the vortex. Now, from
equation (A.1) for a Rankine vortex at a height h above a surface, the velocity v parallel to the surace at
a distance [ from the normal to the surface through the vortex core is given by:

)
TIr R+ -

allowing for the image in the surface. Thus, the pressure coefficient corresponding to this, based on
a reference velocity u,, is given by

(A.2)

O (u/u) (4R
ATy E (A9

where it = h/d, and I = I/d,. Thus,
(h?
— 16(u./t,) ————
T+ P
C - a+4) (A4)

p l_2 2
<(1 ] +EZ>

A comparison of this equation with equation (1) shows that the latter does not fully represent the
pressure field of a Rankine vortex. If (¢ — o) in equation (1) is taken to be equivalent to [ in equation
(A.4),1.e. the diminisionless distance from the vortex core, then an extra exponent of 2-0 is required in
the denominator of equation (1) to be consistent with equation (A.4). It can also be seen that the
parameters b, o, C,1, Cpo, S, etc. are in some sense surrogates for the more physically realistic
parameters h( = h/d.) and (u./u,).

APPENDIX 2: NOTATION

reference length

pressure coeflicient (mean or extreme)
reference pressure coefficient, equation (1)
reference pressure coefficient, equation (1)
gradient of C, versus log r plot

g at o =oy

gatou=o,

gradient parameter equation (3)

block or building height

intercept of C, versus logr plot at r = b
iat o =0

iato=o,

turbulence intensity

building length

factor in parameter determination (Section 5.2)
distance from windward corner

value of r at start of mature region
distance from windward corner used in area averaging procedure
gradient parameter, equation (1)

building width

distance from windward corner ( + ve f})
distance from windward corner ( — ve )

]
(=]

anNas

=]
-

%Xgmw;%wFN;-g-mengQ



792 C. W. WILLIAMS AND C. J. BAKER

Yo vortex position in mature region

Ve vortex size in mature region

o angular displacement from bisector of windward corner (Figure 1)
oo angular position of vortex core in growth region

O, angular vortex size in growth region

o value of « where g = g, = pgo

p wind angle from bisector of windward corner (Figure 1)

AC, pressure difference parameter, equation (3)

0 wedge angle
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